quarta-feira, 27 de outubro de 2010

Read Back - Do not Change or Add Any Word - Listen to Carefully


PORTUGUÊS  ENGLISH

Legacy N600XL colisão com Boeing GOL 1907

APROVAÇÃO do Plano de Vôo até Manaus (gravadores dos Bastidores)

O avião Legacy N600XL, já estava no ar logo após a decolagem, voando a Saída OREN (OREN Departure) quando o diálogo abaixo aconteceu entre o controlador de tráfego aéreo do Controle de Saída (Departure Control) em São José dos Campos e o controlador de tráfego aéreo em Brasília (Area Control Center), respectivamente nesta ordem:

- Brasília, é São José [dos Campos].

- Fala, São José.

- Oi, Brasília, o November, Meia, Zero, Zero, X-Ray, Lima, para Eduardo Gomes; São José, Eduardo Gomes, solicitando o nível 370.

A resposta do Centro de Controle de Área BRASÍLIA, autorizando o nível de voo 37000 pés:

- 370, Transponder 4574, proa de Poços [ de Caldas ].

O Controlador de Tráfego Aéreo em São José dos Campos fez o cotejamento do que foi autorizado por Brasília, mas o controlador de tráfego aéreo em Brasília não contestou o erro cometido pelo controlador de tráfego aéreo em São José dos Campos, o qual cotejou:

- Confirmo, 370 até Eduardo Gomes, proa Poços [ de Caldas ], qual é a freqüência que te chamo?

O Controlador de Tráfego Aéreo em Brasília informou as freqüências de rádio possíveis e tornou confirmar o nível que ele autorizou:

- 126.05, 135.60, nível 370.

O ERRO FATÍDICO:

O Controlador de Tráfego Aéreo em São José dos Campos ACRESCENTOU a palavra ATÉ ao cotejamento e em seguida transmitiu da mesma forma cotejada para os pilotos do Legacy.

Todo esse dialogo acima foi efetuado no idioma PORTUGUÊS, portanto, nada tem a ver com falta de proficiência em inglês.
Foram conversas feitas através de rádios reservados da Aeronáutica, os quais nada têm a ver com os rádios dos aviões envolvidos ou com os gravadores de bordo, "Caixas Pretas".

Às 18:51 UTC last communication
Controlador de Tráfego Aéreo: N600 squawk identification, maintaining flight level 370, under radar surveillance.

Legacy: Roger.

Legacy N600XL colisão com Boeing GOL 1907


ENGLISH

Legacy N600XL and Boeing GOL 1907 midair


Flight Plan Clearance AS FAR AS Manaus (Approach Control recorders)


Legacy N600XL, it was already in the air short after takeoff, performing OREN Departure when this dialog written below takes place between Sao Jose dos Campos Departure Control's Air Traffic Controller and Brasilia Area Control Center's Air Traffic Controller, respectively:


- Brasilia, it is Sao Jose [Departure Control].


- Speak out, Sao Jose.


- Hi, Brasilia, November, Six, Zero, Zero, X-Ray, Lima, to Eduardo Gomes; Sao Jose, Eduardo Gomes, requesting flight level 370.


Brasilia Area Control Center answered with Clearance to flight level 37000 feet as below:


- 370, Squawk 4574, Heading Poços [de Caldas NDB].


Sao Jose dos Campos Departure Control's Air Traffic Controller read the Clearance back to Brasilia Area Control Center, but Brasilia ACC Air Traffic Controller didn't argue out the clearance read back by Sao Jose Departure Control's Air Traffic Controller, who had read back:


- I confirm, 370 as far as Eduardo Gomes, Heading Poços [NDB). What's frenquency I should call you?


Brasilia ACC's Air Traffic Controller informed two possible radio frequencies and reaffirmed the flight level as cleared:


- 126.05, 133.60, flight level 370.


The fatal mistake:


Sao Jose dos Campos Approach Control's Air Traffic Controller added AS FAR AS to the Clearance read back and on the following act he passed that read back Clearance on Legacy's pilots.


All dialog was spoken in Portuguese, therefore, it has nothing to do with English proficiency lack.


Dialog was transmited through set apart Air Traffic Control Radio channels, which they have nothing to do with all airplanes communication radios on board nor with Cockpit Voice Recorders.

At 18:51 UTC last communication


Brasilia ACC Air Traffic Controller: N600 squawk identification, maintaining flight level 370, under radar surveillance.


Legacy: Roger.

quarta-feira, 13 de outubro de 2010

Total Number of Flight Time States Better Pilot's Proficience?


A JetBlue Airways disse que todos pilotos em operações da Part 121 (Brasil RBAC 121 download PDF) devem demonstrar os requisitos de conhecimentos de Piloto Linha Aérea descrito nas FARs e passarem nos exames escritos de Piloto Linha Aérea. A empresa acrescentou, todavia, que o exame escrito está desatualizado e deve ser revisado para "refletir a evolução da indústria".

"Fundamentalmente, a JetBlue acredita que a correlação de conhecimento e experiência com total de horas de voo é injustificado", a empresa disse. "Nosso propósito centra na QUALIDADE - não QUANTIDADE - de experiência".

Qualquer exigência de hora de voo que possa ser intencionado como uma indicação de forte conhecimento e experiência  de aeronáutica é "sem base, e é meramente uma suposição débil e arbitrária", disse a JetBlue.

As declarações escritas de empresas aéreas dizem que um piloto com um certificado comercial, uma homologação de voo por instrumentos, 500 horas de voo e 250 horas executando as tarefas de piloto em comando "teriam o nível suficiente de experiência para operar como segundo em comando" numa operação da Parte 121, e portanto, essas exigências deviriam ser impostas para concessão de certificado Piloto Linha Aérea-Segundo-Em-Comando (2PIC) para pilotos em operações das Partes 121, 125 e 135.

A JetBlue também contestou a exigência atual que candidatos a Piloto Linha aérea devam ter pelo menos 23 anos de idade, advertindo que a empresa "não é partidária de quaisquer dados que sugerem que idade seja um fator contribuinte de conclusão bem sucedida e competente das funções exigidas de um Segundo-em-Comando".

A Continental Airlines aprovou o mínimo de 750 horas no formulário de um 'certificado de transporte comercial' para pilotos que operem na Parte 121, acrescentando, "Nós prevemos que isto seja um esforço de completa certificação com detalhados requisitos de treinamento e conhecimento formal e teste de experiência".

De fato, a Boeing preveniu que, um movimento para aumentar o mínimo de foras de voo pode "adversamente colidir com o fluxo de disponibilidade de pilotos a dar suporte às operações da Parte 121 e afetar potencial e negativamente a qualidade tão bem, quanto pilotos tornam-se mais interessados em adquirir hora de voo do que assegurar o valor da experiência".

Sob a nova lei, a FAA tem 36 meses para emitir uma regra final que seja clara e entendida exatamente como as exigências de treinamento serão implementadas.

REFERENCE

FlightSafety International

ASW SEP 2010 FlightSafety International

FAA. "New Pilot Certification Requirements for Air Carrier Operations". Federal Register, Docket No. FAA-2010-0100. Feb. 8, 2010.

quinta-feira, 7 de outubro de 2010

Have You Been Confident of Corrosion Has Been Kept From Your Plane?


TRADUÇÃO para qualquer idioma
1 - selecione o parágrafo a ser traduzido
2 - selecione o idioma no TRADUTOR
3 - clicar na seta do TRADUTOR
4 - aguardar a tradução
5 - colocar o ponteiro do mouse sobre o parágrafo selecionado TRADUZIDO, surgirá o texto original

"We want to make airplanes that fly like birds," said Fu-Kuo Chang, a scientist at Stanford University who developed the sensors and co-authored a recent article about the technology in the journal, Advanced Materials. "Aircraft that have all the sensing information about what is happening around them, just like birds do."

Aircraft could soon be covered in new technological cobwebs. Inspired by the gossamer strands of spider webs, scientists from Stanford University have created an ultra-fine mesh of strain and temperature sensors.

Wrapped around an aircraft, the sensors could help craft monitor their internal well-being. This added awareness could prevent microscopic cracks from developing into catastrophic failures. Beyond aircraft, the new technology could create a new breed of intelligent automobiles, packaging and medical devices.

Aircraft and birds both have various ways to sense their environment. Birds have eyes to see, ears to hear and mouths to speak (or sing). Aircraft have their own versions of these organs, such as radar, which gathers information about the physical environment, and radio, which allows them to communicate.

But aircraft lack nerves. Unlike birds, they don't have a way to sense tiny changes inside their bodies. For instance, a bird in a dive can sense, through its nerves and other tissues, whether the strain is too great and if they need to pull up before their bones break.

The new spider web-inspired mesh would give aircraft two new senses birds have had for millions of years: strain and temperature. The new mesh contains tiny structures that can, say, measure the temperature along the entire body of the aircraft, or map the air pressure flowing around a wing.

The new sensor is a plastic polymer that has the gold sensors laid down on top of it, which monitor the skin of the aircraft. The Stanford scientists are already developing technology that will allow pilots to image the interior of their aircraft similar to the way pregnant women can see their unborn children.

By adding ultrasonic wave-inducing piezoelectric devices, pilots could constantly scan the aircraft to discover, say, microscopic cracks in the supports long before they developed into life-threatening failures.

"This will help ensure the safety of air transportation," said Frank Chang, a scientist at the University of California, Los Angeles who is familiar with the research but is not involved in it.

To paper an entire aircraft with sensors would ordinarily add significant weight, and therefore require more fuel, something airlines are anxious to avoid. To get around this problem the California scientists stripped the sensors down to the bare minimum of material, eliminating 99.7 percent of it.

Spider web-like sensors that can detect touch and temperature in aircraft are just the beginning, say the scientists. The new sensors could eventually lead to smarter cars, wound dressings that tell doctors how quickly a patient is healing, shirts that allow pregnant women to see their unborn child whenever they want, or even synthetic skin for robots.

"This will have very extensive usage and importance," besides just aircraft, said UCLA's Chang.

CAUSES OF CORROSION

Corrosion is the destruction of metal by electrochemical reaction with its environment. Figure 1 illustrates some typical sources of the corrosion that affects airplanes. As shown in figure, three conditions must exist simultaneously for corrosion to take place:

The presence of an anode and a cathode. This occurs when two dissimilar metals or two regions of differential electrolyte concentration create a difference in electrical potential.

A metallic connector between the anode and cathode.

An electrolyte such as water.

Eliminating these three conditions in airplanes is restricted by practicality, functionality, and feasibility. Dissimilar metal contact cannot always be avoided because of weight, cost, and functional issues, but the potential for corrosion can be minimized by using surface treatments, plating, painting, and sealing. Water cannot be avoided, but it can be controlled with drain paths, drain holes, sealants, and corrosion-inhibiting compounds. Controlling the presence of water is usually the most effective means of preventing corrosion

Two of the most destructive forms of corrosion are stress corrosion cracking (SCC), also known as environmental assisted stress corrosion, and exfoliation corrosion. SCC occurs rapidly and follows the grain boundaries in aluminum alloys. Exfoliation corrosion also follows grain boundaries. It occurs in multiple planes, causing a leaf-like separation of the metal grain structure. Both forms of corrosion cause a loss of load-carrying capability. The most effective way to control this kind of corrosion is to use materials that are not susceptible to SCC at design stress levels or have a grain structure that is not susceptible to exfoliation.









An increasing number of operators are now providing ETOPS service to their passengers. For example, 76 percent of 767 operators and 42 percent of 757 operators are flying ETOPS routes. Several operators have discovered that the cost of ETOPS maintenance, compared to its benefits, also offers them a significant cost advantage when flying their non-ETOPS routes and when operating their non-ETOPS airplanes.


REFERENCE

DAVID BANIS
ENGINEER
MATERIALS TECHNOLOGY
BOEING COMMERCIAL AIRPLANES GROUP


J. ARTHUR MARCEAU
ENGINEER (RETIRED)
MATERIALS TECHNOLOGY
BOEING COMMERCIAL AIRPLANES GROUP


MICHAEL MOHAGHEGH
ENGINEER
STRUCTURES ENGINEERING
BOEING COMMERCIAL AIRPLANES GROUP


HARRY KINNISON, PH.D.
ETOPS MAINTENANCE PROGRAMS
MAINTENANCE AND GROUND OPERATIONS SYSTEMS
BOEING COMMERCIAL AIRPLANES GROUP